

Kills one person every 6 seconds.

Global problem with devastating human, social and economic impact.

Today more than 400 million people worldwide are living with diabetes.

- **a** diabetes is common and its frequency is rising dramatically worldwide.
- It is a life-threatening condition.
- A full and healthy life is however possible with diabetes.
- In many cases, diabetes can be prevented

- ▶ Prevalance of type 2 diabetes was > 400 million in year 2015, and is likely to rise to > 500 million by year 2035
- > Premature mortality

 \blacktriangleright Life expectancy \downarrow 5-10 years

► Fatal CHD ↑ 2-4 fold

► Fatal stroke ↑ 2-3 fold

Morbidity

Non-fatal CHD ↑ 2-3 fold

▶ Retinopathy will develop in ~80%

▶ Nephropathy will develop in ~ 30%

Foot ulcers will develop in ~ 5%

Direct cost

>> 9-15% of total

Healthcare budgets of most westernized countries

- Diabetes care should be managed by a multidisciplinary team that may draw from:
 - > primary care physicians
 - **subspecialty physicians**
 - > nurse practitioners
 - > physician assistants
 - > dietitians, exercise specialists
 - pharmacists, dentists, podiatrists, and mental health professionals.

- **Education**
 - Diabetes Self-Management Education, Support
- Nutrition
 - **▶** Medical Nutrition Therapy (MNT)
- **Immunization**
- > Physical Activity
- **Smoking Cessation**
- > Psychosocial Assessment and Care
- **Prevention and Delay of Type**
- Pharmacotherapy

A close relationship between blood glucose levels and complications of diabetes

Better control in T2DM means fewer complications

Impact of Intensive Therapy For Diabetes: Summary of Major Clinical Trials

Study	Micro		Macro		Mortality	
UKPDS						
DCCT / EDIC						
ACCORD						
ADVANCE						
VADT						

Initial Trial

Long Term Follow-up

- Eliminate symptoms related to hyperglycemia,
- Reduce or eliminate the long-term microvascular and macrovascular complications of DM, and
- Allow the patient to achieve as normal a life-style as possible

- Identify a target level of glycemic control for each patient,
- > provide the patient with the educational and pharmacologic resources necessary to reach this level, and
- **Monitor/treat DM-related complications.**

Glycemic control

AIC <7.0%*

Preprandial plasma glucose 90–130 mg/dl

Postprandial plasma glucose <180 mg/dl

Lipids

LDL <100 mg/dl

Triglycerides <150 mg/dl

HDL >40 mg/dl for man

>50 mg/dl for woman

Key concepts in setting glycemic goals:

- ► Goals should be individualized
- ► Certain populations (children, pregnant women, and elderly) require special considerations
- Less intensive glycemic goals may be indicated in patients with severe or frequent hypoglycemia
- ► More stringent glycemic goals (i.e. a normal A1C, _6%) may further reduce complications at the cost of increased risk of hypoglycemia

(particularly in those with type 1 diabetes)

Postprandial glucose may be targeted if AIC goals are not met despite reaching preprandial glucose goals

For patients with diabetes and hypertension, blood pressure targets should be individualized through a shared decision making process that addresses cardiovascular risk, potential adverse effects of antihypertensive medications, and patient preferences.

➤For individuals with diabetes and hypertension at lower risk for cardiovascular disease (<15%), treat to a blood pressure target of <140/90 mmHg.

► For individuals with diabetes and hypertension at higher cardiovascular risk: with use risk Calculator (>15%), ablood pressure target of <130/80mm Hg maybe appropriate, if it can be safely attained

	Diabetes history			
	Characteristics at onset (e.g., age, symptoms)	✓		
	 Review of previous treatment regimens and response 	✓		
	 Assess frequency/cause/severity of past hospitalizations 	✓		
	Family history			
	 Family history of diabetes in a first-degree relative 	✓		
	Family history of autoimmune disorder	✓		
DACT MEDICAL	Personal history of complications and common comorbidities			
PAST MEDICAL AND FAMILY HISTORY	Macrovascular and microvascular	✓		✓
	 Common comorbidities (e.g., obesity, OSA) 	✓		✓
	 Hypoglycemia: awareness/frequency/causes/timing of episodes 	✓	✓	✓
	 Presence of hemoglobinopathies or anemias 	✓		✓
	 High blood pressure or abnormal lipids 	✓		✓
	 Last dental visit 	✓		✓
	 Last dilated eye exam 	✓		✓
	Visits to specialists	✓	✓	✓
	Interval history			
	 Changes in medical/family history since last visit 		✓	✓

Individualizing Glycemic Targets

	Psychosocial conditions			
	 Screen for depression, anxiety, and disordered eating; refer for further assessment or intervention if warranted 	✓		✓
	 Identify existing social supports 	✓		✓
BEHAVIORAL	 Consider assessment for cognitive impairment* 	✓		✓
AND DIABETES SELF- MANAGEMENT SKILLS	Diabetes self-management education and support			
	 History of dietician/diabetes educator visits/classes 	✓	✓	✓
	 Assess diabetes self-management skills and barriers 	✓		✓
	 Assess familiarity with carbohydrate counting (type 1 diabetes) 	✓		
	Pregnancy planning			
	 For women with childbearing capacity, review contraceptive needs and preconception planning 	✓	✓	✓

	Laboratory evalution	A1c if the results are not available within the past 3 months		
		If not perfomed/available within the past year		-
		Lipid profile, including total, LDL and HDL cholesterol and triglycerides		
		Liver function tests	•	
		Spot urinary albumin-to-creatinine ratio	-	
		Thyroid-stimulating hormone in patients with type 1 diabetes	-	
		Vitamin B12 if on metformin (when indicated)		
		Serum potassium levels in patients on ACE inhibitors, ARBs or diuretics		

PHYSICAL EXAMINATION	 Height, weight, and BMI; growth/pubertal development in children and adolescents 	✓	√	√
	Blood pressure determination	✓	✓	✓
	 Orthostatic blood pressure measures (when indicated) 	✓		
	 Fundoscopic examination (refer to eye specialist) 	✓		✓
	Thyroid palpation	✓		✓
	 Skin examination (e.g., acanthosis nigricans, insulin injection or insertion sites, lipodystrophy) 	✓	✓	✓
	 Comprehensive foot examination 			
	 Visual inspection (e.g., skin integrity, callous formation, foot deformity or ulcer, toenails)** 	✓		√
	 Screen for PAD (pedal pulses-refer for ABI if diminished) 	✓		✓
	 Determination of temperature, vibration or pinprick sensation, and 10-g monofilament exam 	✓		√

- Type 1 diabetes accounts for >90% of cases.
- Type 2 diabetes is increasingly recognized in children.
- **Permanent neonatal diabetes**
- Transient neonatal diabetes
- MODY
- Others diabetes e.g. in cystic fibrosis or Cushing syndrome.

- MODY is a monogenic form of diabetes with an autosomal dominant mode of inheritance:
 - Mutations in any one of several transcription factors or in the enzyme glucokinase lead to insufficient insulin release from pancreatic ß-cells, causing MODY.
 - Different subtypes of MODY are identified based on the mutated gene.
- **▶** Originally, diagnosis of MODY was based on presence of non-ketotic hyperglycemia in adolescents or young adults in conjunction with a family history of diabetes.
- **▶** However, genetic testing has shown that MODY can occur at any age and that a family history of diabetes is not always obvious.

- > Prevent death & alleviate symptoms
- **Achieve biochemical control**
- Maintain growth & development
- > Prevent acute complications
- > Prevent or delay late-onset complications

- **Diabetes**
- **Insulin**
- **▶** Life-saving skills
- **Recognition of Hypo & DKA**
- Meal plan
- Sick-day management

- Education is fundamental to diabetes management & metabolic control. Teaching about diabetes is best handled by a diabetes management team, including a physician, nurse, educator, dietitian, & mental health professional.
- The family of diabetic patient must be taught the following basic of treatment:
 - monitoring the child's blood glucose and urine ketones.
 - preparing and injecting the correct insulin dose subcutaneously at the proper time.
 - recognizing and treating low blood glucose reactions.
 - having a basic meal plan.

- Physical fitness and regular exercise are to be encouraged in all children with type 1 diabetes.
- Regular exercise improves glycemic control through
 - increased utilization of glucose by muscles.
 - increased rate of absorption of insulin from its injection site.
 - increasing insulin receptor number.
- In patients who are in poor metabolic control, vigorous exercise may precipitate ketoacidosis because of the exercise-induced increase in the counter-regulatory hormones.

INTENSIFYING TO INJECTABLE THERA

چرخه تصمیم گیری برای مدیریت هیپرگلیسمی بیمار محور در دیابت نوع 2

مرور و توافق دوره ای مجدد در مورد طرح مدیریت درمان •مرور مجدد برنامه مدیریت درمان

- •جلب توافق متقابل در مورد تغییرات لازم در رویه درمان
- •اطمینان از به اجرا گذاشته شدن تغییرات توافق شده درمانی به صورت زمان بندی شده به منظور جلوگیری از ایجاد بی تفاوتی به روند درمان
- •باید به صورت منظم حداقل یک یا دو بار در سال فرآیند چرخه تصمیم گیری بازنگری شده و مجددا انجام گیرد.

ویژگی های اصلی بیمار را ارزیابی کنید

- •بیماری ها ی همراه نظیر بیماری قلبی عروقی أترواسكلروتیک (ASCVD)، بیماری مزمن کلیه و نارسایی قلب
 - •ویژگی های بالینی، به عنوان مثال، سن، HbA1c، وزن
 - •مسائلی مانند انگیزه و افسردگی
 - زمینه فرهنگی و اجتماعی و اقتصادی

نظارت و پشتیبانی مستمر شامل موارد زیر خواهد بود:

- •دستیابی به احساس عاطفی تندرستی
- قابلیت تحمل داروهای مصرفی را ارزیابی کنید

اهداف مراقبت

• جلوگیری از عوارض

فاکتورهای خاصی که انتخاب شیوه درمان را تحت تاثیر قرار میدهد را در نظر بگیرید

- هدف فردی HbA1c
- تاثیر درمان بر وزن و هیپوگلیسمی
 - اثرات جانبی داروها
- پیچیدگی رژیم درمانی، یعنی دفعات و روش مصرف • شیوه درمانی را امتخاب کنید تا بیشترین امکان به دست آوردن پایبندی و پایداری در
 - ادامه درمان را فراهم سازد.
 - هزینه و امکان در دسترس بودن دارو را ارزیابی کنید.

اجرای مدیریت درمان طراحی شده

•بیمارانی که قادر به دستیابی به اهداف درمان نمی شوند معمولا تا زمانی که پیشرفتی دیده می شود باید حداقل هر ۳ ماه یکبار ویزیت شوند، در ابتدا اغلب مطلوبتر است فواصل ويزيت ها كمتر باشد تا برنامه أموزشي (DSMES) يياده

ASCVD = Atherosclerotic Cardiovascular Disease DSMES = Diabetes Self-Management Education and Support

SMBG = Self-Monitored Blood Glucose

توافقی دو جانبه بر سر برنامه مدیریت درمان با بیمار برقرار کنید

- •اهداف این برنامه باید مشخاصا (SMART)
 - ويژه Specific
 - -قابل اندازه گیری Measurable
 - -قابل دستيابي Achievable
 - -واقع بينانه Realistic
 - -زمان بندی شده Time limited باشد.

طراحی تصمیم سازی برای برنامه ریزی روش درمانی حساب شده با مشارکت بیمار

- شامل یک بیمار (در صورت لزوم خانواده / مراقب یا پرستار) آموزش دیده و آگاه
 - ترجیحات بیمار را دنبال می کند
- مشاوره موثر شامل مصاحبه انگیزشی، تنظیم هدف و تصمیم گیری مشترک خواهد
 - بیمار را توانمند می سازد.
- دسترسی به DSMES (اموزش مدیریت بیماری خویشتن در دیابت و پشتیبانی مستمر) را تضمین می کند.

Glucose-lowering medication in type 2 diabetes: overall approach.

Energy balance

Eating patterns and macronutrients

distribution

Carbohydrates

Protein

ODietary fat

Micronutrients and herbal supplements

8 Alcohol

Sodium

Nonnutritive sweeteners

- **Biguanides**
- **Sulfonylureas**
- **Thiazolidinediones**
- **Meglitinides**
- **Alpha-glucosidase inhibitors**
- **DPP-4** inhibitors

- **SGLT-2** inhibitors
- **Dopamine-2 agonists**
- **Bile acid sequestrants**
- **▶**GLP-1 receptor agonists
- **A**mylinomimetics

- The <u>Biguanide</u> class of antidiabetic drugs, originates from the <u>French lilac</u> or goat's rue (Galega officinalis), a plant used in folk medicine for several centuries
- Metformin became available in the <u>British National</u>
 <u>Formulary</u> in 1958

- Metformin is widely accepted as the 1st line agent
- and next as the background medication of the intensification strategy
 - An insulin-sensitizer which fits with the physiopathological features of the disease
 - A powerful agent which decreases HbA1c by >1%
 - No weight gain
 - No hypoglycaemia
 - Possible cardio-vascular protective effect
 - **>** Possible protective effect against cancer
 - **▶** Safe: low level of serious side effects
 - Cheap

Insulin (mU/L)

- MOA: dipeptidyl peptidase-4 inhibitor, blocks the breakdown of GLP-1 in small intestine increasing concentration in the bloodstream
- $A1c \downarrow 0.5-0.8\%$
- **▶**FPG ↓ 15-30 mg/dl
- **▶**PPG ↓ 34-50 mg/dl
- Dosing: sitagliptin 50 or 100 mg daily, saxagliptin 2.5 or 5 mg daily, linaglipitin 5 mg daily (Taken with or without food)
- Side Effects: Possible hypoglycemia when used with insulin or insulin secretagogues
- Often added to metformin for maximum effect

Advantages

- Lack of hypoglycemia when used as monotherapy
- **Weight loss**
- **▶** Reduces PPG values
- Combination of injectable therapies of basal insulin and a GLP-1 RA is a strategy

Disadvantages

- > Injectable
- AEs: headache, nausea (often transient), diarrhea

 Dosage modification with renal dysfunction
 needed (albiglutide, dulaglutide)
- Contraindicated in severe renal impairment (exenatide)
- May be associated with pancreatitis
- > Associated with thyroid cell cancer in rodents
- May be associated with renal insufficiency

Advantages

- **≫**Oral
- No hypoglycemia when used as
- monotherapy
- **>** Weight neutral
- **▶** Generally well tolerated

Disadvantages

- modification required Dosage with renal impairment (sitagliptin, saxagliptin, alogliptin)
- > CYP3A4 interactions (saxagliptin, linagliptin)
- May be associated with pancreatitis
- May worsen heart failure (saxagliptin)
- May cause severe joint pain

**After 12 weeks of monotherapy

Diastolic Blood Pressure

- **▶GLP-1 Ras**
 - ▶ Reduce postprandial triglycerides,
 FFA, and LDL
- **▶**DPP-4 inhibitors
 - Reduce fasting LDL and triglycerides
 - Small increase in HDL
 - **▶**Parallels weight loss

Glucose: From Blood to Urine

Renal Handling of Glucose: A Potential New Drug Target?

"Normal" individuals:

- Filtered glucose load:
 approximately 180 g/day
- Urinary glucose: less than
 0.5 g/day
- Glucose reabsorption occurs in the proximal tubule through the action of SGLT1 and SGLT2

Generic Name	Approved Daily Dosage Range,mg	Duration of Action, h
Sulfonylurea—first generation		
Chlorpropamide	100 – 500	> 48
Tolazamide	100 – 1000	12 – 24
Tolbutamide	500 – 3000	6 – 12
Sulfonylurea—second generation		
Glimepiride	1 – 8	24
Glipizide	25 – 40	12 – 18
Glipizide (extended release)	5 – 15	24
Glyburide	1.25 – 20	12 – 24
Glyburide (micronized)	0.75 - 12	12 – 24
Nonsulfonylureas		
Repaglinide	0.5 – 16	2 – 6
Nateglinide	180 – 360	2 4

- **▶**Secondary failure rate
- **▶**Hypoglycemia
- **▶**Weight gain
- **Low cost**
 - **Elderly**
 - > Impaired renal function
 - **▶**Irregular meal schedule
- **▶**Increase cardiovascular events?

Sulfonylureas - Drug Profile

Advantages	Potent glucose lowering effect Favorable adverse effect profile
Disadvantages	Hypoglycemia, more with Glyburide Glyburide contraindicated in renal impairment? Glyburide impairs ischemic preconditioning in heart (UKPDS did not reveal increased cardiac risk)
Concomitant use with other drugs	Can be used as monotherapy and with all classes including insulin

Antihyperglycemic Agents and Renal Function

Born	February 27, 1899
	West Pembroke, Maine, U.S.
Died	March 31, 1978 (aged 79)
	Toronto, Ontario, Canada
Nationality	Canadian
Alma mater	<u>University of Toronto</u>
Known for	Co-discoverer of insulin
Awards	Flavelle Medal (1950)
	Gairdner Foundation International Award (1971)
	Order of Canada
	Order of the British Empire
	Order of the Companions of Honour
Scientific career	
Fields	Physiologist
	Biochemistry

Fred Banting (1891-1941)

Charles H. Best (1899-1978)

John J.R. McLeod (1876-1935)

James B. Collip (1892-1965)

Marjorie (?-?)

Before and After

One of the first patients to ever receive insulin therapy

- **▶**Animal insulin
 - **▶** Beef insulin
 - **▶** Beef-pork insulin
 - >Pork insulin
- Human insulin by recombinant DNA technology
 - **▶** Human insulin
 - >Analogs of human insulin

Brief 100 year history of Insulin

Category/Name of Insulin
Ultra Rapid-Acting
Fiasp®—insulin aspart
Rapid-Acting
Insulin Lispro
Insulin Aspart
Insulin Glulisine
Technosphere insulin
Short-Acting
Regular Human
Intermediate-Acting
NPH Human
Long-Acting
Insulin Detemir
Insulin Glargine
Insulin Degludec
Insulin Mixtures
NPH/Regular (70%/30%)
Protamine/Lispro (50%/50%)
Protamine/Lispro (75%25%)
Protamine/Aspart (70/30)

The glycemic management in type 2 Diabetes

INTERVENTIONS **BEHAVIOUR** HEALTHY

AT DIAGNOSIS OF TYPE 2 DIABETES

Start healthy behaviour interventions (nutritional therapy, weight management, physical activity) +/- metformin

A1C <1.5% above target

A1C ≥1.5% above target

Symptomatic hyperglycemia and/or metabolic decompensation

If not at glycemic target within 3 months, start/increase metformin

Initiate insulin +/metformin

Start metformin immediately

Consider a second concurrent antihyperglycemic agent

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF1

NO

CONSIDER INDEPENDENTLY OF BASELINE A1C, INDIVIDUALIZED A1C TARGET, OR METFORMIN USE*

IF A1C ABOVE INDIVIDUALIZED TARGET PROCEED AS BELOW

COMPELLING NEED TO MINIMIZE HYPOGLYCEMIA

DPP-4i

GLP-1 RA

SGLT2i

TZD

If A1C above target

If A1C above target

SGLT2i

OR

TZD

If A1C above target

If A1C above target

SGLT2i

OR

TZD

GLP-1 RA OR

> DPP-4i OR TZD

SGLT2i OR DPP-4i

OR GLP-1 RA

If A1C above target

If A1C above target

Continue with addition of other agents as outlined above

If A1C above target

Consider the addition of SU4 OR basal insulin:

- Choose later generation SU with lower risk of hypoglycemia
- Consider basal insulin with lower risk of hypoglycemia⁹

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF!

CONSIDER INDEPENDENTLY OF BASELINE A1C, INDIVIDUALIZED A1C TARGET, OR METFORMIN USE*

+ASCVD/Indicators of High Risk

- Established ASCVD
- Indicators of high ASCVD risk (age ≥55 years with coronary, carotid, or lower-extremity artery stenosis >50%, or LVH)

GLP-1
RA with
proven
CVD
benefit¹

If A1C above target

If further intensification is required or patient is unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV benefit and/or safety:

- For patients on a GLP-1 RA, consider adding SGLT2i with proven CVD benefit and vice versa¹
- TZD²
- DPP-4i if not on GLP-1 RA
- Basal insulin³
- SU⁴

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF!

CONSIDER INDEPENDENTLY OF BASELINE A1C, INDIVIDUALIZED A1C TARGET, OR METFORMIN USE*

+HF

Particularly HFrEF (LVEF <45%)

SGLT2i with proven benefit in this population^{5,6,7}

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF!

CONSIDER INDEPENDENTLY OF BASELINE A1C, INDIVIDUALIZED A1C TARGET, OR METFORMIN USE*

NO

IF A1C ABOVE INDIVIDUALIZED TARGET PROCEED AS BELOW

COMPELLING NEED TO MINIMIZE WEIGHT GAIN OR PROMOTE WEIGHT LOSS

GLP-1 RA with

good efficacy for weight loss¹⁰

SGLT2i

If A1C above target

SGLT2i

GLP-1 RA with good efficacy for weight loss¹⁰

If A1C above target

If quadruple therapy required, or SGLT2i and/or GLP-1 RA not tolerated or contraindicated, use regimen with lowest risk of weight gain

PREFERABLY

DPP-4i (if not on GLP-1 RA) based on weight neutrality

If DPP-4i not tolerated or contraindicated or patient already on GLP-1 RA, cautious addition of:

SU⁴ • TZD² • Basal insulin

......

Use Principles in Figure 9.1, including reinforcement of behavioral interventions (weight management and physical activity) and provision of DSMES to meet individualized treatment goals

If injectable therapy is needed to reduce A1C1

Consider GLP-1 RA in most patients prior to insulin²

INITIATION: Initiate appropriate starting dose for agent selected (varies within class)

TITRATION: Titration to maintenance dose (varies within class)

If already on GLP-1 RA or if GLP-1 RA not appropriate OR insulin preferred

Add basal insulin3

Choice of basal insulin should be based on patient-specific considerations, including cost. Refer to **Table 9.3** for insulin cost information.

Add basal analog or bedtime NPH insulin

INITIATION: Start 10 IU a day OR 0.1-0.2 IU/kg a day

TITRATION:

- Set FPG target (see Section 6: Glycemic Targets)
- Choose evidence-based titration algorithm, e.g., increase 2 units every 3 days to reach FPG target without hypoglycemia
- For hypoglycemia determine cause, if no clear reason lower dose by 10-20%

Assess adequacy of basal insulin dose

Consider clinical signals to evaluate for overbasalization and need to consider adjunctive therapies (e.g., basal dose >0.5 IU/kg, elevated bedtime-morning and/or post-preprandial differential, hypoglycemia [aware or unaware], high variability)

